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ABSTRACT

The MGR~v) algorithm of Ries, Trottenberg and Winter with v 0

and the Algorithm 2.1 of Braess are essentially the same multigrid

algorithm for the discrete Poisson equation: -h U =f . In this report

we cons ider' the extension to thte general diffusion equation. -V * pVu = f

p = p(x,y) > p0 > 0 .-In particular, for the two-grid scheme we reobtain
the basic result p < 2 (1+Kh) 'in the stronger form fii-t4G L j 0(l+Kh).2

-- - - -- - - - - - - - - - - h

.Computational results indicate that other constant coefficient results

carry over as well. b ~ .-
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.Introduction

....... Multigrid methods are proving themselves as (very) successful tools

for the solution of the algebraic equations associated with discretization

of Elliptic Boundary-Value problems - see [1], [3], [4], [5), 9). Never-

theless, it seems we are just beginning to "understand this powerful idea.

Hence, there is a need for continued probing, experimentation and new

proofs - less for the sake of proof and more for the sake of insight. - )

In [2] Braess proposed and analyzed a class of multigrid methods. In

particular, he considered a particular algorithm for the Poisson Equation -

"Algorithm 2.1". He shows that the contraction number p for a two-grid

method is given by

(1) 1 ]

This result holds whenever Q is a polygonal domain whose sides have slope

+ 1, 0 or o and the discretization satisfies an additional condition

(see QI of section 2). In [8] Ries, Trottenberg and Winter discuss the

class of MGR[v] methods for the Poisson Equation in a square. Using Fourier

Analysis they obtain an explicit formula for the corresponding contraction

numbers p[v]. In particular, they obtain - for two grids

(2) P[ 1 2 PIA 1 (2v)2v
2 27' 2 (2v +l ,

As it happens MGR[O] is the same as the "Algorithm 2.1" and the results of

[2) and [8) are consistent. The results of [8) are more precise for more

restricted problems.

- .. .. . .. . .. . . .. .... . -. . .. . . . . . . . . . . . . . . .

. . . . . . . . . . . . .. . . . . . . . . . . . . .
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In this report we consider the more general diffusion equation

(3) -V *p(x,y)Vu = f in ,-

u = 0 on 3-2 S

p(x,y) > pO > 0 and

where 0 may be a general bounded piecewise smooth domain, or, 0 is a

polygonal domain whose sides have slope + 1, 0, or -. We employ the usual

five-point difference analog of (3) and seek to solve the (large) system of

linear algebraic equations. We consider a class of linear multi-grid methods

which include the MGR[v] methods when p(x,y) = 1 . Our basic result is the

following: Consider the two-grid method. Then
1mP < INMG ILh < 1(1+Kh)

where 1( denotes the energy norm and K is a constant determined by
h

pO and llVpll the norm of the gradient of p(x,y). Moreover, the

proof clearly indicates why one should expect great improvement when further

"smoothing" is introduced.

Thus we extend the results of Braess [2], Ries, Trottenberg and Winter [8]

to include a variable diffusion coefficient p(x,y) and more general regions.

In section 2 we formulate the problem and the basic two-grid method of S

solution. In section 3 we prove the basic estimate. This proof proceeds from

a fundamental insight of McCormick and Ruge [7]. Section 4 describes the re-

sults of some computational experiments which lead one to believe that the .

results of [2.] are essentially correct for the variable coefficient case as

well. These computations were carried out on the CRAY I at the Los Alamos

National Laboratory. Finally, an appendix gives the basic "energy" estimate

required in section 3.

...-. o........
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2. The Problem

Given a (small) value h > 0 let {(xky) = (khjh); k~j = 0,kli
+ 1, + 2,...} be the associated mesh points in the x - y plane. Let

(2.la) RE:: {(xk,yj); k+j 0 (mod 2)}

(2.1b) R0  {(xkyj); (k+j) 1 (mod 2)}

Let Q be a bounded domain in the plane with a piecewise smooth boundary

M . We wish to define the set of "interior" mesh points, Qh We assume

1that h is less than the length of each smooth section of M

The main result, (Theorem 3.1) for the two-grid iterative schemes is

valid in quite general domains provided that we use a modification of

"approximation of degree 0" (see [6)) to describe the boundary conditions

Definition:*

(I) If (xkYj) E R0 n 2 we say that (xk,y.) E Qh if the four

neighbors {(x k+l y j) , (Xk l 'y j )  (xkYj I ) , (xkYj+l)}
and the line segments from (xk,) to each of its neighbors
all lie in Q , the closure of Q.

(ii) If (xkY j ) E RE n we say that (xk h if the eight

neighbors {(xk+l'Yj)' (XkYj) (xk'Yjl)I (xk'Yj+l)I (Xk+l Yj+l)"

(xk+l'Yj-l). (Xk-l 'yj+l ) , (Xk- 'Yj- ) } and the line segments from

(xkYj) to each of its neighbors all lie in .

(*)We must consider the line segments from (xkYj) to the neighbors only

in the case of reentrant corners or cusps.

.... .... . ~ ~ .~ . .'..-...... .. ** .~ . . .. .. - .
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When M2 has a cusp or a corner at a point (x,y). we require that

(x,y) = (xkYj) g RE

The points (xk'Yj) '~ /2h are the boundary points of 2h That is

M h := {(xk'Yj) E f/0hi

A true multigrid requires the use of many coarser grids. In such

general regions the treatment of the boundary conditions on succeeding

coarser grids gets complicated. In truth, the multigrid literature has

barely touched on this question. In the case studied by Braess [2], Q

is a polygonal domain whose sides have slope + 1, 0 or - and the

corners all belong to the coarsest (and hence, the finest) grid. For

this case we note that (see Figure 1):

(s21.a) 30 h C3

and

(ffI.b) if a is a side of 0 with slope + 1, then all the points of

3Qh which also lie on M belong to RE

For any function F(x,y) defined on the (x,y) plane we write

(2.2a) Fkj F(xkYj)

(2.2b) FR+ j F((k+ )h,yj)

(2.2c) FRj+ : F(xk,(j+ )h)

To obtain an approximate solution of (3) we seek a grid function

{Ukj} defined on the mesh points and satisfying the system of equations:

for (xk'Yj) IE

k. h
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0 points of R0 n.
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(2.3a){

2~ {k~j.. [k,j U k,j-.1] -Pk,j+ CUk,j+lfUk,j]} fkj

and, for (xksyj) 0

(2.3b) Uk 0

We rewrite (2.3) as

*(2.4a) [LhUlk f (xkY.)

(2.4b) Uki 0 , (x klyj) h

We turn to the question of the solution of these linear algebraic

*equations via a "two-grid" method. Let

(2.5) QE RE n Q Q R0

Our two grids are 02  and Q2E Let Sh and SE be the spaces of grid

*functions defined on R E u R 0  and R E which vanish outside Q h andQE

*Our first step is to set-up "communication" between these two spaces.

To be specific, we construct linear "interpolation" and "projection" opera-

*tors I h I E so that

(26)Ih~ 5h S E (Projection),

(2.6b) I h* S -S (Interpolation).E E h
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hDefine the interpolation operator IE by

(2.7a) [I U]i (x~,~ RE

and, if (x k'yj E then

[Ih 1 'P 4Jkl Pk ,Ukl .+- J
(2.7b) [Eli P, kj P +U +

where

(2.c) kj 'P~k+ J +Ik- ,j +Pkj- 'Pk j+ 1

Finally if (kY)E R0 /%1 then (of course)

h

Observe that (2.7a) implies that I E is of full rank, i.e.,

hdim Ra.cnge I E dim S E

The projection operator I h is defined by

E 1 h T(2.8) 1 h 7 .(1E)

Let

(2.9) R :=Range I h

hThe choice of interpolation operator IE enables us to characterize R

as follows:



Lemma 2.1: Let Ih be defined by (2.7). Then, a function U U(h) E ShE h

is in R if and only if

(2.10) [LhU]kj = 0 V(k,j) with (xky j ) 0 .

We are now ready to describe the two-grid methods. Let G be a smoothing

operator. That is, given u0 6 Sh we construct via
0 0_Lu 0ou

(2.11a) = Gu0 = u + B(f-Lhu) = G0u + Bf

(2.11b) GO = (I-BLh)

where B is a given matrix and

(2.11) fl GOIh = sup LhGoPG01P) < 1

iP0 (L hlp,O

Algorithm 2.1:

0 0
Step 1: Given u0  S h form Gu

Step 2: Construct G via

Ukj kj (xk'Yj RE

[LhU] kj kj (xk'Y) 0

Ukj = 0 , (xkyj) E R 0

That is: "relax" the equations on the "odd" points.

• "- -. , . . . -- '.,' ,- .' -. ...-- ."... ,-'-..'-i'.. •..- -.. i -. . .. , . -'.-..... . .. .--. . . -,.-. .-. - .. ," .i i
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EStep 3: Set r= f- Lhu rE Ihr

Step 4: Solve L where L is the "coarse grid operator" to be

described later.

Step 5: Set u u+'
______ E~

1 0Step 6: Set u -+U and return to step 1.

An important smoother G is the odd-even Gauss-Seidel scheme. That

is, define H0  relaxation on the odd points as in Step 2-

(2.12a) (H u)k Uj (xks RE

and

(2.12b) [Lh(H U)]k f (xkqYj) E2

(2.12c) U kj =0 , (x k'yj) RE /

Similarly define HE relaxation on the even points, by

(2.13a) (H u)kj =k 9k (xk'yj) E R 0 u R E /2 E

(2.13b) [Lh(HE u)k ' (x 2Yj) E S

Let v > 0 be a integer. We obtain the generalized MGR~v) two-grid iterative

scheme by choosing

(2.14) G =(HEHO)

We now describe two choices of the coarse grid operator L.

E*1
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Case 1: Let

(2.15a) a k- ,j- lj Pk P Ck, 1J-

1 Pkji- Pk+ ,J-l Pk+ ,JPk+1- ](2.15b) bk =7 L j. + C 1 ,

(2.15c) dk [ak +ak +bk +ki.)

Then, if (k+j) 0 (mod 2).

[E~ ~Uki = k+ ~j+kUk+l ,j+i ak.. i.. Uk.1,.j-1

(2.16) 
-

-b U b Uk+ ,j- k+lJ-1 k_- 4+ k-i ,j+l dkjUkj

Case 2: (The Standard Case): if k+j 0 (mod 2) then

(2. 7) L(2)Ulk 1 h ~k i kl,+ - Pk+ ,i.. Uk+l ,j-i

Pk- ,J- k-i j-l - Pk- J+ Uk-i j+l + kj kj}

where

(2.17b) Ski 'P~k+ ,J~h +P+ - P-h+ P-J



3. Analysis of the Algorithm

We begin our analysis with an observation which is (by now) well known

among multigrid theorists (see [7]). Let

-' E h
(3.1) LE I LhIE

Consider Steps 4-5 of the two-grid iteration. Suppose we replace LE by

LE2 i.e., suppose we find the function ip which satisfies

LE 1P rE

and set

u = + h
E

We claim that

Lhu f

1

i.e. u is the desired solution! To see this we set

(3.2a) U --

and observe that Step 2 implies that if k + j H1 (mod 2), then

(Lh )kj (LhU-LhG)kj = (f-Lhi)kj : 0

Hence Lemma 2.1 asserts that there is a function V E SE and

(3.2b) I V

q% P,'_:
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We now verify that

IVLE h E
"" L V I I (LhI V) = I L = r ."-"

Hence,

h - U
(3.3) u- IE = u- ^  U!!

Unfortunately we have chosen Step 4 with L E and not LE  This choice was

not merely pique on our part (or the part of Braes and Ries, Trottenberg and

Winter). The point.is -- having chosen LE as a five point star we can now

proceed to replace Step 4 with a new two grid step -- i.e. we can build a

true multigrid.

In any case, the problem of Step4 is seen to be

LE: L E0, .

hwhere, as we see from Lemma 2.1, 1 is the Lh projection of s into

R . Hence

(3.4a) e h h II
11^1h IE01IL h L

We will give a complete description of LE in the appendix. For now, we

write

(3.5) LE LE + L

where L is defined by this equation. Observe that both LE  and LE

(either LMI) or L(2)) are symmetric, positive definite operators.

Hence the associated L is a symmetric operator. Our main estimate is
E

. . . .i.
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Lemma 3.1: For L =L or L L(2 there is a constant K, depending
E E o LE E

only on IVp 11. the maximum norm of the first derivatives of the diffusion

coefficient p(x,y), and p0  such that, for all 4E SE' 0 we have

(L E"

(3.6) -Kh < - < 2(l+Kh)
-(L~~ E"

Proof: See Theorem A of the Appendix.

Consider the eigenvalue problem

(3.7a) (XL E CE) , i

which is equivalent to

(3.7b)(X-L L0 0.

Using (3.5) we see that this problem is equivalent to

(3.8a) [(2X-I)L E-ENl 0

From Lemma 3.1 we find

(3.9) Kh~x 3+2 Kh
2- 2

Theorem 3.1: Let

E0  0 1 1
E U-u E U =Uu

then

(3.10) < 1 0HE11L 2~(+hI E: L

. . . . .. . . . .. 
. .
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Proof: We have

--U-u 0 =G 0 0

Using (2.11c) we see that

0(3.11) llL . i l(3. 1 )II 11I Lh I I Eo IILh
h h

From (3.2a), (3.3b) and Step 5 of the multigrid algorithm we have
1 ^ h( _ )

(3.12a) 1= - Ih€ = E

and

(3.12b) LE =L
E .E

Hence

(3.13) - = (I-LEILE 

Thus

(3.14a) (Lh ' C h = (L = 2(ILh ( - )

h Lh h E E E h E E E
-1""

2( LE k- ) ( - ))E -.

Since the eigenvalues of LE L" are also the eigenvalues of the symmetric

operator L LEI (3.9) implies that the eigenvalues ~i of the symmetric

EEE

operator (I-L VL 12 stsy"'''
E (l+Kh) E I < +Kh)E LE) sa

1 1 2E

(3.14b L L

.. . °. ° .. °.. -. ° ° ° ,g~ , l l ° . . . .. . ., ° . . ". . "° . . .L. L .. °

I ~ ~ ~ ~ ~ L .-. E. . . E,--,, -. E'.- .'..-' . • ,E...-.,.- ..-.. ,-. , . .:. ,E ."-"--.:.-'.-- ..E.--.--- E -. . ' =--
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Thus, (3.14b) implies

12 2p2(L pSL p)E 2p2 (L2p2 L)I h E

= i2  2. L 2'

This result, toget"er with (3.4a) and (3.11) implies the Theorem.

. . . . 7
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4. Experimental Results

In order to demonstrate that the results of section 3 are valid for

the variable coefficient case an experimental project was undertaken.

The essence of this project was to write a computer program which imple-

mented Algorithm 2.1. By experimenting with different functions p(x,y)

and different true solutions u(x,y) it was shown that formula (2) of

section 1 is valid for the variable coefficient case. The region 0 is

the unit square.

The computer program runs in an interactive fashion and allows the

user to provide a number of parameters. These include N, the number

of points on a side of Sh' the fine grid and v, the number .of smoothing

iterations. Starting with a particular initial guess, Algorithm 2.1 was

then repeated until the discrete L2  norm of the residual was less than

10-8. For the initial guess UO, interior points of 0E were set to 5

while interior points of a0 were set to -5.

Experiments were done with LE, the coarse grid operator chosen to be

both L E and L E The calculation of L E was complicated by the

fact that for points of SE for which L refers to points of h-

formula (2.15c) does not apply. The reason for this is because the computa-

tion of either ak± j± or b k± j involves referring to points outside

of S1 Of course since Ukj = 0 if Uki Ea 3h we set ak± j± and

bk± j;: to zero when Uk±lj±l and Uk±lj±l are in 3ah" However, we

still need a value for dkj for the two nearest interior points. For the

four corners points, we set dkj to be the value of dkj of the nearest

interior point. As the mesh gets finer, this approximation to the true

- ",, . .. . . . .iNi lrllill .. ... .. . . . . . ..
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dkj improves. However, in almost all of the experiments the rate of

convergence using L was not quite as good as the rate obtained

(2)using L 
-

The tables below list the functions p(x,y) and the true solutions

u(x,y) used for the experiments. For each problem the numerical results

obtained using both L E and L E are displayed. N corresponds to the

number of interior points on a side of sh and v corresponds to the number

of smoothing iterations. The smoother used was the odd-even Gauss-Seidel

scheme as described in section 2. (V) in the tables corresponds to the

theoretical rate given in equation (2) of section 1. The theoretical rate

has e.ly been proven to be valid, when v > 0, in the constant coef-

ficient case. However, as can be seen from the numerical results it

appears to be valid in the variable coefficient case as well.

In conclusion, the numerical results demonstrate the validity of

Theorem 3.1 for the case v = 0 and support extending equation (2) of

section 1 to the variable coefficient case.

&T .•2
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Table I, Experimental Results

Problem 1, p(x,y) = 1 , u(x,y) = 0

L i(l) L =
E E E E

NV 0 1 2 NV 0 1 2 3

15 .4858 .0646 .0344 .0200 15 .4858 .0646 .0344 .0200

31 .4844 .0696 .0375 .0252 31 .4844 .0696 .0375 .0252

63 .4836 .0708 .0386 .0263 63 .4836 .0708 .0386 .0263

a(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283

Problem 2, p(x,y) = 1 , u(x,y) = sin 7rx sin iry

LE L() LE L 2

0 1 2 3V 0 1 2 3

15 .4858 .0646 .0344 .0200 15 .4858 .0696 .0344 .0200

31 .4844 .0696 .0375 .0252 31 .4844 .0696 .0375 .0252

63 .4836 .0708 .0386 .0263 63 .4836 .0708 .0386 .0263

G(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283

. . -.
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Problem 3, p(x,y) = 1 , u(x,y) = x(1-x)y(1-y)

LE = L l) LE  L

V V 0 1 2 3

15 .4858 .0646 .0344 .0200 15 .4858 .0646 .0344 .0200

31 .4844 .0696 .0375 .0252 31 .4844 .0696 .0375 .0252

63 .4836 .0708 .0386 .0263 63 .4836 .0708 .0386 .0263

o(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283

Problem 4, p(x,y) = exy, u(x,y) = xexy sin 7rx sin iry
LE L ] LE L2)"::

L E E

0 1 2 3 0 1 2 3

15 .4863 .0760 .0437 .0292 15 .4858 .0643 .0342 .0199

31 .4841 .0742 .0425 .0303 31 .4840 .0697 .0373 .0252

63 .4842 .0720 .0401 .0283 63 .4841 .0709 .0384 .0264

a(v) .5000 .0741 .0410 .0283 o(v) .5000 .0741 .0410 .0283

Problem 5, p(x,y) = (3-x)(3-y) , u(x,y) = exy sin irx sin Try

L =L(1 L L 2E E E E

V 0 1 2 3 V 0 1 2 3" "

15 .4841 .0708 .0393 .0270 15 .4839 .0643 .0339 .0199

31 .4819 .0713 .0398 .0276 31 .4819 .0694 .0373 .0250

63 .4820 .0709 .0386 .0268 63 .4820 .0706 .0381 .0261

a(v) .5000 .0741 .0410 .0283 0(V) .5000 .0741 .0410 .0283

... .
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Problem 6, p(x,y) = eX(l + sin Try), u(x,y) = exy sin Trx sin Ty

E = E LE- E

0 2V 1 2 3

15 .4879 .1084 .0727 .0565 15 .4869 .0686 .0377 .0255

31 ,4854 .0901 .0582 .0442 31 .4851 .0710 .0390 .0270

63 .4851 .0784 .0473 .0350 63 .4850 .0715 .0390 .0270

0(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283

Problem 7, p(x,y) = e~ x y , u(x,y) (1-eX)(x-l)y cos 2

(I) (E=L 2)
LE = LE LE L

Nv 0 1 2 3 0 1 2 3

15 .4857 .0797 .0482 .0351 15 .4853 .0650 .0347 .0207

31 .4842 .0739 .0431 .0312 31 .4841 .0697 .0376 .0253

63 .4836 .0714 .0399 .0278 63 .4835 .0708 .0386 .0263

G(v) .5000 .0741 .0410 .0283 a(v) .5000 .0741 .0410 .0283-

Problem 8, p(x,y) = e(sin -  cos y) u(x,y) = eXYx(x-l)y(y-l)

Problem 8,-- -" .-

(E1)E= 1

0 1 2 3 0 1 2 3

15 .4849 .0772 .0451 .0296 15 .4843 .0645 .0342 .0202

31 .4839 .0751 .0437 .0313 31 .4837 .0697 .0373 .0253

63 .4842 .0721 .0404 .0289 63 .4842 .0710 .0385 .0264

o(v) .5000 .0741 .0410 .0283 o(v) .5000 .0741 .0410 .0283

K:... . .. . . .. . . .. . .. . . . . ... .. . . . . . . ...... .. .. . . . , . . . . . . . . . • . .' .
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1rb1 forh < x < 3/4 , '/-x < y < + x , x- < y< /-

L6 otherwiseJ

u(x,y) = &Xxxxl)y(y-i)

L L (1) L L 2
E E E E

V 0 1 2 3 NV 0 1 23

15 .4848 .0648 .0311 .0174 15 .4649 .1815 .1015 .0634

31 .4857 .0 698 .0377 1.0248 31 .4854 .1186 .1291 .1046

*63 .4855 .0711 .0389 .0266 63 .4855 .0712 .0393 .0275

* a(v) .5000 .0741 .0410 .0283 cr(v) .5000 .0741 .0410 .0283
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Appendix

In this section we determine L Eand the quadratic forms

Let U E SE9 let (x k~y.) E Q E Then

(A.1) [L EU] kj = [L h I EU]kj

For any V E Sh' [L hV] kj involves the four values V k±ljs V kj±l

Therefore we consider the four squares I, II, III, IV (see fig. 2) with

vertices

(A.2a) I: {(xk9Yj) (xk+l'yj+l)9 (x k+2'.yj). (xk+l 'j- 1} -

(A.2b) HI: {(xk'yk), (xk+l9yj+l ), (xk'yj+2)9 (xk-l 'yj+l) I

(A.2c) III: f(xksYj), (xk-l'y.j+l ). (xk.2 1Yj). (xk19yj-l)l

(A.2d) IV: {(xk9Yj)s (xk l'yj l~ (XksYj-2), (xk+lgYj-l)}

In each square the value of [I EU] at the center point is a weighted average

(given by (2.7b), (2.7c)) of the values of U at the corners. Thus, in general

L E is a 9-point operator based on the 9 vertices of these four squares.

Since L E is a symmetric operator it takes the form

[EU kj EkUkj - k+l,j k+2,j ak-l,j k-29j

k,j+l k~j+2 ak,j-lU k,j-2
(A.3)

-oU aU

-k- ,j+ U k-l ,j+l - k+ ,J- k+l ,j-l
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j+2:

j--

k-2 (k-1) k k+. k+2

Figure 2
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Lemma A.1: Let

0 -

(A.4a) Ekj E ki + E ki

where

0E a +a + +
kj k+l,j k-l,j k,j-1 k,j+l Yk+ ,j+

(A.4b)

+k-,j- k+ ,j- + k- ,j+

Then

(LE" ' ) Xk+l , j 'k+2,j -kj 2

(A.5) + 2 2k,j+l k " + z k ,j'l 2 k

2 2

k+aj-h [k+l,j-I "'kj 2 + X Ekj~Pkj

Proof: Summation by parts.

Similar calculations yield

Lemma A.2: Using the definitions (2.15), (2.17) we have

E = x ak+,j+.[Jk+lj+l kj

(A.6)
+ X bk+.,j-E[+l,j-l kj2

and

(LE2 ) Pk+ ,j+ k+l'j+l " kj

(A.7)

1 ~ 22- 2 P k+'J'h[£*k+l ,j-I "kj

" " ................................ .......... ••.••°h.....o .- ,. "
2h_ __ _ __ _ _

.- .- t* I ~ A~t. .' . . . . . . *~ . .. * .7
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We now compute the contribution of each square to [LEU1kj and the two

quadratic forms. In evaluating [LhI U]kj we have five terms. The four

terms

(IhU)
"Pk±+,j( Ek±l,j ' "Pk,j± E k,j±l

are clearly associated with squares I and (I respectively. It is

convenient to agree that

I°

Pk±_,jUkj is associated with square i

and II

pkj+Ukj is associated with square

Let Ekj(R), a k±l (R), 0kj±l(R), yk± j± (R), ck±; , (R) denote the

contributions of square R to the corresponding coefficients Ekj, akl,j,

.k,j±l' Yk± ,j± , ak±Jj of LE

Consider square I. We must consider two cases, either (xk+l ,yj ) E h

or (xk+l'Yj) ' . The following geometric lemma is essential to under-

standing the computations in the latter case.

Lemma A.3: Suppose (xk+l'yj) i Sh Then either (xk+2,yj) i or the

line segment from (xk+l ,yj ) to (xk+2,Yj) is not entirely in . Further
(x k+l 'Yj+I )' (Xk+l 'Yj-I )  Q E "ZT

Proof: (see Figure 3). Since (x a the points (x (x

ky E +1'yl k+l yj
(xk+lyj.l) ' E On the other hand, (Xk+l'y j) Q h  implies that either

(xk+2,yj) or the line segment from (xk+lY.) to (x0k+2,y j) . If

(Xk+2,yj) I f then clearly (Xk+l'Yj.l) and (xk+l'Yj-) I E

k+2'y k~l'j~l kl'yj-) 0 Q
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If (xkY.) E f then a portion of DO crosses the line segment
k+2 yj

X < x < Xk+2 , y = y. . If that portion of the boundary continues smoothlyk+l - k+' j

near (xk+l)yj) , then the line segments from (xk+l'Yjtl) to (xk+2,yj)

are not entirely in Q. Finally, if there is a non-convex corner (x,y)

near (xk+l,yi) that corner (x,y) E RE Hence that corner must be

(Xk+l'Yj+l) or (xk+l'Yj-I) which is therefore not in QE The other one

is not in 0E  because h is less than 1 the length of smooth segments
E4

of a3.
We return to the calculation of Ekj(1), k+l, (I), yk+ , 1+ 1), and

ak+ ,j_ (1). Square I does not contribute to the other coefficients.

Case 1: (xk+ l yj) E 0h

A straight forward calculation yields

(A.8a) Ekj(1) l '.. f
kj 2h2 Lk+,j c k+l ,j j 

-

(A.8b) 1 j )  1 Pk+ ,j Pk+1/2 ,j
klj2 c2h k+l,j

(A.8c) y (I) = 1 Pk+,j Pk+l,j+
2h2  Ck+l ,j

(A( I))l Pk+ ,j Pk+l j- .

(A.8d) ak+,j.- 2h k+l,j

...............
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Case 2: (x y)
k+, yj h

In this case we set

(A.9a) E kj(I) 12 1 k

(A.9b) y (I) = ..i k+ ,j Pk+1 ,J+
k+ ,J+h 2 c k1,

II - Pk+ Pk+1,j-(A.9c) k441,j-h M h kl,

(A.9d) a (1) E (kiC)- k j ' -

Observe that cLk+1,j >0, and since U =U U
k+2,j k+l,j+1 Uk+],j-1 =0,

thechics f k+1j (I)s Yk+h,j+;5(l) and a k+ J..(I) do not effect

the value of L

Consider Square 11.

Case 1: (xk~+ y

In this case we obtain

(A.l0a) E k j(11) =~ Lk ,i+ c

(II) 1 Pkj+ Pk.J+/ 2
(A~~b k~+12h k,j+1
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(A.l0c) 1.II 'kj= ' k+ ,j+l
k+ ,j+ h2  k,j+l

(A.10d) . (I,) I ' k,j+h 'k-h,j+l
k- ,J+ 2h 2  c kj+l

Case 2: (xk~jl 0

Using arguments similar to those used in case 2 of square I we have

(A.lla) Ekj (II) 2 k+
(II)~~ hkj (I

As for Yk (II) and a I)we may use the formulae of (A.l0c)

* and (A.l0d). Finally

(A.llb) a k~j+l (II) E Ekj(II) -Yk4 ,J+ (II) -ak- J+ (II)

Because LE is symmetric it is not necessary to compute the contributions

*from squares III and IV. We now make a similar decomposition of the coefficients

of L1 Set

* (A.12a) a ()_1 Pk+h,j Pk4.l j+h
k+ ,J+ ( 2  - ck+l j3

(A.12b) a k4hjh(II) T2 ckj ~+,~k+ ,j h2  k~+l

I 1 k+ ,j Pk+1 i-
(A.12c) bk+,j(I) -

h~j- - k+l,j

* (A.12d) b (I kj ~-,~k- ,i+ 2  ck

___~~II T2 J. -. *.-.* .. * .
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(A. 13) dkj(1) a ak.~$(I) + bk. j.(I)

Let (L UU) and (L~1 UU denote the contribution of square IE lI E 'I

to the quadratic forms (LEUU) and E(MUU respectively. Then, using

lemma A.1 we see that

2 2

~k+1,j (I) N+1 j+1 - k+l ,J-11  + Yk+ 1,j+( I)[N~+1j+1

(A.lla) 2 - 2
+ 12,j-h(I)N+, -*~k+l,j-11 + CT k+ i.. C I) NJ+1 j.-1 lkj1

k+/2,j. k)+l,j+l 'Pk+2,j

and

EL1 1p) I ak.j+ (I)[NP+l~j+l 'Pkj]

(A.11b) + a k+3/ 2'j...h( [k+2 j'Pk+l J-1l2 + b k.4 j j()l~k+ j...1 ]

+ b k+s/'j+ (I)[wk+l j+l *1 2J

A basic inequality is

Lemma AA4: Let ~ESE then

2 r 2 2

(A.12a) N'kl~~ 2{kIlkjllJ < -*'k+2,j~ + +, - k~ 2-
k+12, J'lk'Pk~j J)

+ I~'k+l J~l 'Pk,j] + ['Pk,j 'Pk+l J-l)

. . . . .. . . ..-7. . . .
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(A.13a) 'kj -2 < {[ +2 j - k+l ,j+l j2+ V~k+l J+l kj11

(A.3b) '+2,j - j k<2 2 [P j k+1 ,J-1 ~ ~k+l J-1 kj1

(A. 13c) [tpk+2,j 'kj .2 < N~'+2,~ j '+l , j+11 2 + k+lj+l 'Pkj ]

Prof: Aplyth +~N+2,j - k+lj-l1  + N~+ J-1 kj]

Prof:Aplyth triangle inequality and the inequality 2ab < a2 +b

Lemma A.5: Suppose (xkl) E 0 Then there is a constant K

depending only on JVpIIl and p0  such that

(A.14) 0 < (E ) 2(1+Kh) (L ) I

Proof: Niote that

2 LE'I M ~ " I 2 LE~II

From (A.8c), (A.8d), (A.12a) and (A.12c) we have

(A.15a) 2 a k+ ,j+ I Yk+ ,J+ (I)

(A.15b) .~b. 1 ()=k+j.()

From (A.l0c), (A.l0d), (A.12b), (A.12d) we see thatI

(A.16a) a k32,. A
2 W/2, jL(I) Y+1 -(I

(A.l6b) bI . I2 k+h,j+ k4 , j -h
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Therefore from (A.lla) and (A.llb) we have

2
EM (A.17 = akj 2. '

+ lj(I)['Pk+l j+1 *'k+1,J-1]

Thus, we have established the left hand inequality of (A.14). Using (A.12),

i.e., the definitions of a (I), bk (I) etc. and (A.8b), thek+ ,J+ +

definition of akl (1) and (A.10b), the definition of klj(1) we see

that there is a constant K , depending only on 11 VpIl and p0  such that

0k+l,j I

I(A.18b) <-(l +Kh)

where

(A.18c) a any of {ak+~ ak+/ bk. b+3 2 j}

Therefore (A.17) and (A.12c), (A.13c) and (A.llb) yields the right hand

inequality of (A.14).

L(A.19) 2(LO) ,PJ)I<S(L m~)I !( 4+Kh)(LO1 ~,~

Lemma A.6 Supse ( Then the conclusion of lemma A.6 and

its corollary hold.



T~~~~ M R

33

Proof: Calculations similar to those of lemma A.5 now yield

(A.20) 0< L = ak+l,j[k+2,j - kj 2

Thus, as before, the left hand inequality of (A.14) holds. In this case

(A.lla), (A.llb) and (A.lOc), (A.lOd) imply

ck+l < (1+!\h)
aI -

Thus, the lemma is proven.

Theorem A: There is a constant K, depending only on 11plvp1 and pO ..-

such that, for both choices of LE(=L(I),L(2 )) and associated , if

0 and E SE we have

-Kh < (LE¢, < 2(l+Kh)

Proof: The arguments which give lemma A..5 and lemma A.6 extend to all the

squares, II, III and IV. Thus, those lemmas imply that the theorem holds

for LE = LEI) The case of L L 2) follows from (3.5) and the ob-
servation that

(l-Kh) (L I, , <_ (L 2, , ( l+Kh) <tL ) . ." '

E

21:.:

I- o
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